cosylab am

CONTROL SYSTEM LABORATORY

Mark Plesko, Klemen Zagar,Joie Dedic

Beyond PCs: Accelerator Controls on
Programmable Logic

Jozef Stefan
Institute

The large number of gates in modern FPGAs including processor cores allows implementation of complex designs, including a
core implementing Java byte-code as the instruction set.Instruments based on FPGA technology are composed only of digital
parts and are totally configurable. Based on experience gained on our products (a delay generators producing sub-nanosecond
signals and function generators producing arbitrary functions of length in the order of minutes) and on our research projects
(a prototype hardware platform for realtime Java, where Java runtime is the operating system and there is no need for Linux), |
will speculate about possible future scenarios: A combination of an FPGA processor core and custom logic will provide all
control tasks, slow and hard real-time, while keeping our convenient development environment for software such as Eclipse. |
will illustrate my claims with designs for tasks such as low-latency PID controllers running at several dozen MHz, sub-
nanosecond resolution timing, motion control and a versatile 1/0 controller - all implemented in real-time Java and on exactly
the same hardware - just with different connectors.

— LI

Hardware Arhitecture

= Architecture should be modular,where modules are CPU cores or I/0

modules.
= Three-stage memory:

= Fast, on-chip FPGA RAM (limited capacity)
= Off-chip RAM (optional, large capacity)

= Off-chip Flash (persistent storage)

Flash

= Flash contains:

FPGA dlg [FPGA clg
(copy)| (copy2)

ROM | Rom
o 1) _| (copy2)

= FPGA configuration

Fiesystem(s)

= Operating system and control software
= File system

upgrade)
= Open on-chip bus (wishbone)

R |
| o |

= Flash contains two copies of software (for fallback during software

= Many modules implemented in open source (Ethernet

controllers, UART serial controllers, ...)

Software Architecture

Application

Java Virtual Machine (VM) |

Device
Network Independent
Interfaces
File :
Scheduler
system < |m
0| o
! HHF
)
lemory § é
E a
Standard E =
libraries

Java Optimized Processor

100% pure
Java

Hardware

Example Application: Versatile I/O Controller

= High density, high-performance 1/0s

= Serial, GPIB, USB, firewire, ...

= Same board in different configurations

= 10-100 I/Os per FPGA
= Software:

= Control and configuration

= Communication (with I/0Os and/or SCADA)
= Hardware:

= UARTs, USB controllers, ...

= Multiple cores

= Dedicated DSPs (e.g., fireware camera image
processing)

u Interlocks on digital inputs

a0 LT

Di |g|lal
I/O

lmerlack
P!W
Ethernet
1 } MAC

FPGA

AD/DA
converter

GPIB

Digital input

Digital output

Ethernet MII

The CPU Core

Why not use Java as processor's native bytecode?

. JOP Core Memory Interface
= Advantage: high software development ‘ "

Bytecode
productivity with low defect rates due to good tool- Fan \WL‘

chains (e.g., Eclipse IDE, static code checkers, well- i
established development methodologies, ...

cont

™
............... Extension
Oata

) Fetch

= Disadvantage:

bytecode does not map ideally to hardware
(stack vs.registers, ...)

Stack

9 VO Interface

real-time Java development is not yet
mainstream

Open cores implementing Java bytecode exist, e.g.,
Java Optimized Processor (JOP; http://jopdesign.com)

Hardware-software co-design

Generate Synthesize and
hardware(VHDL) route hardware
Prepare and
= B e
Generate JVM Automated tests.
(Java) on workstation
B Stages of development process
‘Automated
B Define platform: choose modules, CPU cores, ... -
M Software:
M Generate software: operating system core, drivers for modules, matching of bus add!
environment
M Implement software: full cycle of software impl (design, impl test)
® Automated tests on workstation: code is run in si i i on developer's machine

W Hardware:
M Generate hardware: VHDL files of modules are composed together, with bus addresses of modules properly configured
M Design board: design board on which FPGA will be placed, map functionality to pins

M Synthesize and route hardware: use of standard FPGA tools to produce bit image for FPGA configuration, and use of
standard tools for board routing

B Note: software and hardware paths are independent and run in parallel. Interaction is needed only if platform is re-defined.

'Example application: Motion Control

= Control of servo, stepper and other kinds of
actuators

= Typically implemented with DSPs

= Difficult to program and configure
m Co-design: Momr 2
= SW:motion programs, control,
communication
Momr 1
= HW:PID loops (up to several MHz)
cfg —
PID 2 DAC
;s) -\
< Processor
é’
Eiherner v
MAC
FPGA
ICALEPCS 2007

